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• Complicated
o Velocity, temperature – brittle vs. ductile ice response
o Width, shape, inclination, stiffness of the structure – ice failure mode
o Thickness of the ice – failure mode, aspect ratio
o 2D / 3D processes – cone is a 3D structure

• How to study such a complicated problem?
o Full scale – Molikpaq, Norströmsgrund, Kemi I, Confederation Bridge, MSI
o Laboratory scale – Contact line observations, ridging / rafting tests
o Analytical models – Korchavin, Popov, ISO19906
o Simulations – FEM, DEM, PBM

• All the approaches are needed, all have pros and cons. 
Parallel use of different approaches usefull.
All approaches should be equally and critically assessed.
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Simulation methods:
• Low cost
• Can be made realistic
• Full control of parameters
• Superior in analysing complicated processes, such as ice-structure interaction

Ice-Structure Interaction
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Cost Realism Control Level of details 
in analysis

Full scale tests ✭✭✭✭✭ ✭✭✭✭✭ ✭ ✭✭

Lab scale tests ✭✭✭ ✭ ...  ✭✭✭✭✭ ✭✭✭ ✭✭✭

Analytical models ✭ ✭ ...  ✭✭✭✭✭ ✭✭✭✭✭ ✭✭✭✭

Simulations ✭ ✭ ...  ✭✭✭✭✭ ✭✭✭✭✭ ✭✭✭✭✭



• Continuum methods
o FEM, XFEM, ALE
o Well established
o Direct simulations of 3D fracture or ice crushing may not be possible – too many 

elements are needed – need to use phenomenological models.

• Discrete methods
o DEM, NDEM, Lattice
o Usage growing fast
o Can be computationally challenging

• Hybrid methods, Physically-based modeling
o Analytical or heuristic solutions + a numerical method
o Computationally effective
o Need carefull consideration on what is modelled; constraints

Simulation Methods and Approaches
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• Peridynamics
o New, yet to show the benefit to Arctic engineering.

• CFD
o Growing, very much needed
o Hydrodynamics in ice problems
o Ice + waves

Simulation Methods and Approaches
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• Computational speed vs. attension on details

• Desing ice load vs. numerical experiments

• Method development vs. research in ice engineering

• Some problems are too complicated to be simulated in detail.

Simulation Methods and Approaches
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Nobody believes in simulations – except the one who conducted them.

Everybody believes in experiments – except the one who conducted them.

Validation  
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• Large scale – ice load, ice resistance
o Appears attractive
o Not easy to get reliable full scale data with all the relevant information.
o Somewhat easier to get lab scale data.
o Statistical nature of ice load data: What do one or few data points represent?
o Not all experimental data is reliable.
o Downscaling only in a statistical sense.
o Lack of generality: may not apply to another load case.

• Small scale – beam bending, plate bending, fracture length
o Requires experimental data in small scale – only.
o Upscales naturally.
o Ideally leads to emerging properties at a larger scale.

Validation  
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• If you do not believe in simulations, what is it you do not believe in?
Consider 
o N elastic spheres on a frictionless surface with rigid boundaries.
o A DEM to model the contacts of elastic spheres, and of a sphere and a wall.
o Validation to show that a contact follows the Herzian contact model. This is local 

scale validation, or micromechanics.
o It is reasonable to assume that we can model N spheres also; no need to validate the 

results for N spheres.

• Similar cases in ice-structure interaction
o Floating and colliding ice floes.
o Bending of floating beams.
o Sliding of an ice block against another ice block.

Validation  
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Three DEM Examples



• Newtonian dynamics of a system of discrete particles.
o Allows finite displacements and rotations
o Recognises contacts
o Can model fracture and fragmentation

• FEM-DEM and other variants
• The pioneers

o Method: Cundall & Strack (1979); Walton (1980)
o Ice: Hocking, Mustoe & Williams (1985); Hopkins (1992); Løset (1994)

Discrete Element Method
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Example 1: Ridge Punch-Through 
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Heinonen & Määttänen 2001; Heinonen, 2004; Polojärvi & Tuhkuri, CRST, 2009
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Polojärvi, Tuhkuri & Korkalo, CRST, 2012
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• Validation through both field and 
lab experiments.

• In lab: plastic blocks, no cohesion. 
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• Force linked to rubble 
deformation.

• Max force at an early stage.



Example 1: Ridge Punch-Through 
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• No unique shear plane. 
Shape of moving ice mass:
o Initially upward opening cone
o Then a cylinder
o Finally a downward opening cone

• Ice-ice friction important
o Affects the max force
o Affects the compaction of the rubble



• Lab experiments at NTNU.
• DEM simulations at Aalto.

DEM Example 2: Shear Box  
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Polojärvi, Tuhkuri & Pustogvar, CRST, 2014
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No clear shear plane: difficult to interpret results.
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Peak loads due to force chains: What is rubble strength?
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• To understand ice loads: model ice 
failure process.

• FEM: joining discrete blocks with 
Timoshenko beam elements; elasticity, 
cohesive crack model.

• DEM: contacts, buoyancy, drag

DEM Example 3: Rubbling  
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Paavilainen, Tuhkuri & Polojärvi, CRST, 2009, 2011
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Left: DEM with Lab data from Aalto Ice Tank (Saarinen, 2000) 
Right: DEM with Field data from Molikpaq (Timco & Johnston, CRST, 2004)
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• The ice load is transmitted through force chains.
• The force chains define the max ice load. Load drops are linked with buckling of force 

chains. 
• This observation is not in line with assumtions in ISO19906, where the rubbling load is 

the sum of different ice action events: FH ∼ HB + HR + HL + HT
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Figure 2: Snapshot from a FEM-DEM simulation showing a force chain — a sequence of ice blocks in contact due to high
compressive stress — transmitting the load from the intact ice sheet, moving from the left towards an inclined structure.
Colors indicate the average normalized compressive stress on the ice blocks. The stress measure is the so-called particle
stress, describing the average compression of an ice block [7, 14, 15]. Here the ice sheet thickness h was 1.25 m.

this, the paper focuses on extending the limit load model into a numerical limit load algorithm and on89

the use of this algorithm in the analysis of the ice-structure interaction process. The algorithm is also90

verified against the limit load model, compared to the FEM-DEM simulations, and validated against91

full-scale observations. Before concluding the paper, we make some remarks on the applicability of92

the limit load model and algorithm.93

2. Methods94

2.1. Simulations of ice-structure process95

The study is based on the combined finite-discrete element method (FEM-DEM) simulations [4, 26].96

The simulations were performed with the 2D FEM-DEM code of the Aalto University Ice Mechanics97

Group [9, 27–29]. Paavilainen et al. [27, 28] found the model results to be in fair agreement with98

the laboratory and full-scale measurements by Saarinen [30] and the data reported in Timco and99

Johnston [25], respectively. The strength of FEM-DEM in ice mechanics resides in its ability to100

account for numerous individual ice floes and blocks and for the granular behavior of ice rubble.101

Models accounting for these features have been used in several studies on ice mechanics [31–49].102

Figures 1a-f describe simulations that had an ice sheet of thickness h pushed against an inclined rigid103

structure. Approximately 100 m from the structure, a viscous damping boundary condition and a104

constant horizontal velocity v = 0.05 m/s were applied to the ice sheet. About 100 meters away from105

the structure, a viscous damping boundary condition was applied on the ice sheet to mimic a semi-106

infinite ice sheet being pushed against the structure [28]. This boundary condition may not be ideal107

for a case of a structure interacting with, for example, a floe field. Paavilainen et al. [27, 28] describe108

the model in detail. The sheet consists of rectangular discrete elements connected by viscous-elastic109

Timoshenko beams, which failed at locations where the beams met a pre-defined failure criterion110

4

Paavilainen & Tuhkuri, CRST, 2013
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Methods
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Figure 13. An evolution of a simulated ice-structure interaction process. (a)-(e) Snap-
shots from five different process stages with L = 0 m, L = 62.5 m,
L = 125 m, L = 187.5 m, and L = 250 m, respectively. The ice thickness
is h = 1.25 m and the plastic limit is �

p

= 2 MPa. Individual discrete
elements are shown in the topmost figure.

2.3 Statistical tools

This section overviews the statistical methods of this thesis. The text be-

gins by presenting primary statistical measures, probability distributions,

and a procedure for maximum likelihood estimation. The section continues
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• Simulation is deterministic but sensitive to initial conditions.
o Possibility to create data
o Peak load discributions
o Ice load evolution.

• This sensitivity gives similar load statistics than non-homogenous 
ice properites.

0

200

400

600

800

0 50 100 150 200 250

F
[k

N
/m

]
L [m]

Ranta, Polojärvi & Tuhkuri, CRST, 2016



Methods

5

15

25

40 50 60 70 80 90 100 110

y
[
m

]

x [m]

5

15

25

40 50 60 70 80 90 100 110

(a) v0 = 1 · 10�12 m/s

L = 100 m

5

15

25

40 50 60 70 80 90 100 110

y
[
m

]

x [m]

5

15

25

40 50 60 70 80 90 100 110

(b) v0 = 2 · 10�12 m/s

L = 100 m

5

15

25

40 50 60 70 80 90 100 110

y
[
m

]

x [m]

5

15

25

40 50 60 70 80 90 100 110

(c) v0 = 3 · 10�12 m/s

L = 100 m

Figure 15. Process stages from the three first simulations of the simulation set S8 at L =

100 m. The only difference between the cases (a)-(c) is in the initial velocity
pertubation v

0

. Figures clearly show different ice floe arrangements.
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in Figure 15. Legends (a), (b), and (c) refer to the cases of Figures 15a-c,
respectively. The only difference between the cases is in the initial velocity
perturbation v0. The figure clearly shows the divergence of load records after
L = 10 m and large variation in achieved maximum loads within the shown
range.

three limiting extreme value distributions (EVD). The limiting EVDs for

the maxima are the type 1 (Gumbel), the type 2 (Fréchet), and the type 3

(Weibull) distributions. Table 4 shows cumulative distribution functions of
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Figure 13. An evolution of a simulated ice-structure interaction process. (a)-(e) Snap-
shots from five different process stages with L = 0 m, L = 62.5 m,
L = 125 m, L = 187.5 m, and L = 250 m, respectively. The ice thickness
is h = 1.25 m and the plastic limit is �

p

= 2 MPa. Individual discrete
elements are shown in the topmost figure.

2.3 Statistical tools

This section overviews the statistical methods of this thesis. The text be-

gins by presenting primary statistical measures, probability distributions,

and a procedure for maximum likelihood estimation. The section continues
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What are the effects of
• ice thickness h, h2

• inclination angle 𝛂, 𝛂2

• elastic modulus E
• flexural strength 𝛔f
• plastic limit 𝛔p
• shear strength 𝛕
• ice-ice friction 𝛍ii , 𝛍ii

2

• ice-structure friction 𝛍is ,𝛍is
2
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Figure 13. An evolution of a simulated ice-structure interaction process. (a)-(e) Snap-
shots from five different process stages with L = 0 m, L = 62.5 m,
L = 125 m, L = 187.5 m, and L = 250 m, respectively. The ice thickness
is h = 1.25 m and the plastic limit is �

p

= 2 MPa. Individual discrete
elements are shown in the topmost figure.

2.3 Statistical tools

This section overviews the statistical methods of this thesis. The text be-

gins by presenting primary statistical measures, probability distributions,

and a procedure for maximum likelihood estimation. The section continues
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Simulations and multivariate regression analysis suggests:
• The ice load can be explained with h and 𝛂 only.
• The importance of parameters changes during the process.



1. Different methods have each their own merits and limitations –
Use the right method.

2. Validation is not trivial – The scale at which the validation is 
conducted is important. Ice load statistics should be taken into 
account in validation.

3. Novel results have been obtained through simulations: shear 
planes, force chains, key parameters in rubbling.
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