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Ice-Structure Interaction

* Complicated
o Velocity, temperature — brittle vs. ductile ice response
o Width, shape, inclination, stiffness of the structure — ice failure mode
o Thickness of the ice — failure mode, aspect ratio
o 2D / 3D processes — cone is a 3D structure

* How to study such a complicated problem?
o Full scale — Molikpaq, Norstromsgrund, Kemi I, Confederation Bridge, MSI
o Laboratory scale — Contact line observations, ridging / rafting tests
o Analytical models — Korchavin, Popov, ISO19906
o Simulations — FEM, DEM, PBM

« All the approaches are needed, all have pros and cons.
Parallel use of different approaches usefull.
All approaches should be equally and critically assessed.




Ice-Structure Interaction

Level of details
in anaIyS|s

Full scale tests vk ke e ek e e e e ke

Lab scale tests e e ke LD o 6.0 & ¢ e He e e e e
Analytical models * Feo.L. hokokokok e e e Ao e e e e
Simulations * LD o 6.0 & ¢ e e vk e He e e vk e e

Simulation methods:
e Low cost
« Can be made realistic

 Full control of parameters
 Superior in analysing complicated processes, such as ice-structure interaction




Simulation Methods and Approaches

« Continuum methods
o FEM, XFEM, ALE
o Well established
o Direct simulations of 3D fracture or ice crushing may not be possible — too many
elements are needed — need to use phenomenological models.

 Discrete methods
o DEM, NDEM, Lattice
o Usage growing fast
o Can be computationally challenging

* Hybrid methods, Physically-based modeling
o Analytical or heuristic solutions + a numerical method
o Computationally effective
o Need carefull consideration on what is modelled; constraints




Simulation Methods and Approaches

» Peridynamics
o New, yet to show the benefit to Arctic engineering.

« CFD

o Growing, very much needed
o Hydrodynamics in ice problems
o Ice + waves
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Simulation Methods and Approaches

Computational speed vs. attension on details

Desing ice load vs. numerical experiments

Method development vs. research in ice engineering

Some problems are too complicated to be simulated in detail.
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Validation

Nobody believes in simulations — except the one who conducted them.

Everybody believes in experiments — except the one who conducted them.
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Validation

 Large scale — ice load, ice resistance

©)
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Appears attractive

Not easy to get reliable full scale data with all the relevant information.
Somewhat easier to get lab scale data.

Statistical nature of ice load data: What do one or few data points represent?
Not all experimental data is reliable.

Downscaling only in a statistical sense.

Lack of generality: may not apply to another load case.

« Small scale — beam bending, plate bending, fracture length

O
O
O

Requires experimental data in small scale — only.
Upscales naturally.
Ideally leads to emerging properties at a larger scale.




Validation

« If you do not believe in simulations, what is it you do not believe in?

Consider

O
O
O

N elastic spheres on a frictionless surface with rigid boundaries.

A DEM to model the contacts of elastic spheres, and of a sphere and a wall.
Validation to show that a contact follows the Herzian contact model. This is local
scale validation, or micromechanics.

It is reasonable to assume that we can model N spheres also; no need to validate the
results for N spheres.

e Similar cases in ice-structure interaction

O
O
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Floating and colliding ice floes.
Bending of floating beams.
Sliding of an ice block against another ice block.




Three DEM Examples
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Discrete Element Method

» Newtonian dynamics of a system of discrete particles.
o Allows finite displacements and rotations
o Recognises contacts
o Can model fracture and fragmentation

« FEM-DEM and other variants

» The pioneers
o Method: Cundall & Strack (1979); Walton (1980)
o Ice: Hocking, Mustoe & Williams (1985); Hopkins (1992); Laset (1994)
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Example 1: Ridge Punch-Through

indentor platen ;F cut through consolidated layer
7 A}

/ ) \ consolidated layer

h

ice rubble

Heinonen & Maittidnen 2001; Heinonen, 2004; Polojarvi & Tuhkuri, CRST, 2009
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« Validation through both field and
lab experiments.
« Inlab: plastic blocks, no cohesion.
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Example 1: Ridge Punch-Through

* Force linked to rubble
deformation.
« Max force at an early stage.
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Example 1: Ridge Punch-Through

« No unique shear plane.

Shape of moving ice mass:
o Initially upward opening cone
o Then a cylinder
o Finally a downward opening cone

 Ice-ice friction important

o Affects the max force
o Affects the compaction of the rubble
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DEM Example 2: Shear Box

« Lab experiments at NTNU.
« DEM simulations at Aalto.

S =71A—>

shear plane

\/“\'
ice rubble

Polojarvi, Tuhkuri & Pustogvar, CRST, 2014
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DEM Example 2: Shear Box
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Left: large blocks. Right: small blocks.
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DEM Example 2: Shear Box
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No clear shear plane: difficult to interpret results.
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DEM Example 2: Shear Box
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What is rubble strength?

Peak loads due to force chains
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DEM Example 3: Rubbling

To understand ice loads: model ice o T
failure process.

FEM: joining discrete blocks with
Timoshenko beam elements; elasticity,
cohesive crack model.

DEM: contacts, buoyancy, drag 6 70 8 9 100 110
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DEM Example 3: Rubbling
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Left: DEM with Lab data from Aalto Ice Tank (Saarinen, 2000)
Right: DEM with Field data from Molikpaq (Timco & Johnston, CRST, 2004)
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DEM Example 3: Rubbling
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* The ice load is transmitted through force chains.

» The force chains define the max ice load. Load drops are linked with buckling of force
chains.

« This observation is not in line with assumtions in ISO19906, where the rubbling load is
the sum of different ice action events: Fy; ~ Hg + Hg + Hi, + Hp

Paavilainen & Tuhkuri, CRST, 2013




DEM Example 3: Rubbling

« Simulation is deterministic but sensitive to initial conditions.

o Possibility to create data
o Peakload discributions
o Iceload evolution.

 This sensitivity gives similar load statistics than non-homogenous

ice properites.
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DEM Example 3: Rubbling
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DEM Example 3: Rubbling

)

What are the effects of
* ice thickness h, h?

* inclination angle a, o>
* elastic modulus E
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DEM Example 3: Rubbling
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Simulations and multivariate regression analysis suggests:
* The ice load can be explained with h and a only.
» The importance of parameters changes during the process.
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Conclusions

1. Different methods have each their own merits and limitations —
Use the right method.

2. Validation is not trivial — The scale at which the validation is
conducted is important. Ice load statistics should be taken into
account in validation.

3. Novel results have been obtained through simulations: shear
planes, force chains, key parameters in rubbling.
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